A Coordinated Air Defense Learning System Based on Immunized Classifier Systems

نویسندگان

چکیده

Autonomous (unmanned) combat systems will become an integral part of modern defense systems. However, limited operational capabilities, the need for coordination, and dynamic battlefield environments with requirement timeless in decision-making are peculiar difficulties to be solved order realize intelligent control. In this paper, we explore application Learning Classifier System Artificial Immune models coordinated self-learning air particular, paper presents a scheme that implements autonomous cooperative threat evaluation weapon assignment learning approach. Taking into account uncertainties successful interception, target characteristics, type closed-loop behaviors, adopt hierarchical multi-agent approach coordinate multiple platforms achieve optimal performance. Based on combined strengths classifier system artificial immune-based algorithms, proposed consists two categories agents; strategy generation agent inspired by system, coordination mechanisms. An experiment realistic environment shows adopted hybrid can used learn weapon-target unmanned successfully defend against attacks. The presented results show potential approaches enabling adaptable collaborative

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

designing unmanned aerial vehicle based on neuro-fuzzy systems

در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...

A Simple Accuracy-based Learning Classifier System

Learning Classifier Systems use evolutionary algorithms to facilitate rule-discovery, where rule fitness is traditionally payoff based and assigned under a sharing scheme. Most current research has shifted to the use of accuracy-based fitness, after the introduction of XCS, where rule fitness is based on a rule's ability to predict the expected payoff from its use. Whilst XCS has been shown to ...

متن کامل

NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS

Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...

متن کامل

Thyroid disorder diagnosis based on Mamdani fuzzy inference system classifier

Introduction: Classification and prediction are two most important applications of statistical methods in the field of medicine. According to this note that the classical classification are provided due to the clinical symptom and  do not involve the use of specialized information and knowledge. Therefore, using a classifier that can combine all this information, is necessary. The aim of this s...

متن کامل

Learning in Real-time Environment Based on Classifier Systems

This paper presents a new architecture of a classifier system for learning in virtual environments. The model will be integrated in our multi-user platform to provide interaction between intelligent agents and user clones. An agent is an autonomous entity equipped with sensors and effectors. Its behavior is guided by rewards coming from the environment that produce rules called classifiers. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2021

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym13020271